Catlegory:

Reversing

Name:
Bad Tool

Message:

You are provided with an executable file named “BadTool.exe”. This file is used by notorious hacking
group for their malicious activities. This file is believed to contain crucial evidence that could lead to
the group’s downfall.

However, the file is protected by a password, and without it, the investigations cannot go further.
Find out the password hidden within this file. The flag for this challenge is displayed if you enter the

correct password.

Hints:
® If you're using the reverse engineering approach, the first step is to identify the function
responsible for verifying the authenticity of the input. This function handles the comparison

between the user-provided password and the correct one.

Objective:
Your task is to reveal the flag from “BadTool.exe” by entering the correct password. This requires

fundamental reversing technique.

Instructions:
1. Download the zip file (“BadTool.zip”) and extract it to get the executable file “BadTool.exe”. No

password is required to extract. Once executed, it asks for the password.

B ChUsersiminty'\Desktop\BadToolBadTocl.exe

L
L
L
L

L
LLLLLL LLLLLL

d:

2. Start from checking the file by using executable file analysis tool. The tool explained here is
“PeStudio”, however any executable file analyzing tool should work as well. Open the file on
PeStudio. Upon examining the list of strings, you can identify messages corresponding to

incorrect password attempts ("Incorrect") and successful ones ("Correct!! The FLAG is: %s").

Additionally, there is a hint indicating the password format as a 7-digit sequence separated by

a hyphen ("-"). Several dummy 4-digit and 3-digit numbers are also present within the string

list.

@ PPEE - C:\Users\minty\Desktop\BadTool.exe
File Plugins Help

odg g ee
DOS Header
=) Rich Header
v NT Header

(T3 File Header

v [Optional Header
5] Data Directories

R Section Headers
5_! DIRECTORY_ENTRY_IMPORT
= DIRECTORY_ENTRY_BASERELOC
Jak DIRECTORY_ENTRY_DEBUG
4] DIRECTORY_ENTRY_LOAD_CONFIG

{9 UNICODE
& URL

@ Registry
D Suspicious

[oftset

0001AFDO
0001AFED
00018000
00018040
00018070
00018078
00018080
00016088
00018090
00018098
0001BOAO
0001B0AS
00018080
00018088
000180CE
00018110
00018158
00018140
0001B1E8
00018238
0001825C
00018260
00018264
00018268

|| cootB28c

Strings recognized ASCIl
WriteConsoleW
DecodePointer

[The password is 7 numbers combined by *-' (£ digits in total) |
vbvhk|stNRC* @ V\RYnTADTW]V TnU_GT]JEnCBo~zrye)

8317-
4028-
7519-
1364-
2146
5117-
8034-
6590-
3195-
9284-
BBBBE AAAAA DDDD TTTTTIT 0OQOO QOQOO L L
BBA ADD T O 00 OL L

B88BB AMAMAAAD D T © 00 OL L

BBA ADD T O 0O OL L

B8SBB A A DDDDD T 00000 00000 LLLLLLLLLLLL
This tool requires a password!

549
388
023
621
392

While a brute force approach could be used to determine the correct combination, we’ll save
time by using reverse engineering techniques instead. Start by opening "BadTool.exe" in IDA
Free and navigate to the graph view. From there, locate the section of code related to the flag-

revealing process. Scroll down to identify the highlighted functions as shown below.

eax, [ebpivar_298]
eax
ecx, [ebpivar_134]
ecx

esp, 8
eax, eax
loc_4@1500

A 4 L J
&= @a=

lea edx,

loc_4015€0: 3 [push edx

push offset alncorrect | rect\n" [l |1ea eax,

call sub_se1sse I |push eax

add esp, 4 lea ecx,
push eex
call sub_s01000
add esp, oCh
lea edx, [ebp+MultiByteStr]
push edx
call sub_406660
add esp, 4
add eax, 1
push eax ; cchiideChar
lea eax, [ebp+MultiBytesStr]
push eax ; lpMultiByteStr
lea ecx, [ebp+Text]
push ecx 3 lpWideCharStr
call sub_406882
add esp, @ch
lea edx, [ebp+ultiBytestr]
push edx
push offset aCorrectTheFlag | orrect
call sub_se1580
add esp, 8
ek Ak 2 “Tuma

The block outlined with the bold red line is responsible for determining whether the provided
password is correct. This block contains the function that compares the user input with the
correct password. Set a breakpoint at the function call, sub_XXXXXX (depends on the
execution environment), and run the debugger. After pressing [F9] twice, the debugger will
pause and wait for password input. Enter a random string (e.g., "0000-000") into the running

"BadTool.exe". The debugger will halt at the breakpoint. By inspecting the values in the

registers and memory, you'll observe that the function uses the eax and ecx registers, with eax
containing "5117-023" and ecx holding the user input ("0000-000" in this case). This confirms
that the function is comparing the entered value with the correct password, revealing that
"5117-023" is the correct password.

5. Return to the “BadTool.exe” and enter the obtained password. Now you should see the flag!

Flag is:
CSG_FLAG{criminal_evidence_brought_to LIGHT }

References:
® PeStudio https://www.winitor.com/download
® PPEE (Puppy) https://mzrst.com/

® Detect It Easy (DIE) https://github.com/horsicq/Detect-It-Easy

https://www.winitor.com/download
https://mzrst.com/
https://github.com/horsicq/Detect-It-Easy

